Appendix 3
AR04/1119

REGULATIONS FOR THE DEGREE OF
MASTER OF SCIENCE IN URBAN ANALYTICS
(MSc(UrbanAnalytics))

(“These regulations are applicable to candidates admitted to the Master of Science in Urban Analytics Curriculum in the 2020-21 academic year and thereafter”)

(See also General Regulations and Regulations for Taught Postgraduate Curricula)

Any publication based on work approved for a higher degree should contain a reference to the effect that the work was submitted to the University of Hong Kong for the award of the degree.

Admission requirements

MUA1 To be eligible for admission to the courses leading to the degree of Master of Science in Urban Analytics, candidates

(a) shall comply with the General Regulations and the Regulations for Taught Postgraduate Curricula; and

(b) shall hold

(i) a Bachelor's degree with honours in the urban or related fields of this University; or

(ii) a qualification of equivalent standard of this University or another university or comparable institution accepted for this purpose;

(iii) preferably a professional qualification in the urban or related fields; and

(iv) satisfy the examiners in a qualifying examination if required.

Qualifying examination

MUA2

(a) A qualifying examination may be set to test the candidates’ formal academic ability or their abilities to follow the courses of study prescribed. It shall consist of one or more written papers or their equivalent and may include a project report.

(b) Candidates who are required to satisfy the examiners in a qualifying examination shall not be permitted to register until they have satisfied the examiners in the examination.

Requirements for graduation

MUA3 To be eligible for the award of the degree of Master of Science in Urban Analytics, candidates

(a) shall comply with the General Regulations and the Regulations for Taught Postgraduate Curricula; and

(b) shall complete the curriculum and satisfy the examiners in accordance with these regulations set out below.
Period of study

MUA4 The curriculum shall normally extend over two academic years of part-time study. Candidates shall not be permitted to extend their studies beyond the maximum period of registration of four academic years of part-time study, unless otherwise permitted or required by the Board of the Faculty. Candidates who are being granted advanced standing according to MUA6 shall complete the curriculum in not more than four years’ time.

Completion of Curriculum

MUA5 To complete the curriculum, candidates
(a) shall satisfy the requirements prescribed in TPG 6 of the Regulations for Taught Postgraduate Curricula;
(b) shall take not less than 69 credits in the manner specified in these regulations and the syllabuses, and follow courses of instruction and complete satisfactorily all prescribed written work and practical work;
(c) shall complete and present a satisfactory dissertation on a subject within their approved field of study or complete a capstone project comprised of a smart planning and design studio; and
(d) shall satisfy the examiners in all prescribed courses and in any prescribed form of assessment.

Advanced standing

MUA6
(a) Advanced standing shall be granted to candidates who have successfully completed a cognate Masters degree of this University or another qualification of equivalent standard accepted for this purpose;
(b) Advanced standing of up to 12 credits may be granted by the Board of the Faculty of Architecture subject to the condition that the application for advanced standing is received within five years of successful completion of the degree accepted for this purpose;
(c) Applications for advanced standing shall normally be made at the same time of application for admission to the Master of Science in Urban Analytics, and should be accompanied by copies of academic transcripts to support the application.

Dissertation/Capstone project

MUA7 The choice of dissertation or capstone project shall be submitted for approval by no later than 15-April of Year 1 study of the part-time mode. The title of the dissertation shall be submitted for approval by no later than 15-April of Year 1 study of the part-time mode. The dissertation shall be presented by a date as prescribed in the syllabuses; the candidates shall submit a statement that the dissertation represents their own work undertaken after registration as candidates for the degree.

Assessment

MUA8 Each course will be assessed through a combination of written examination paper and coursework assessment, or by coursework assessment alone. The final grading for each course will be determined by performance in the written examination paper and an assessment of coursework.

MUA9 Part-time candidates
(a) who have achieved a Semester GPA of 1.7 or above, may be permitted to present themselves for
re-assessment in the course(s) of failure at a specified subsequent date;
(b) who have satisfied the examiners in all the courses but have presented an unsatisfactory capstone report may be permitted to revise the capstone report and re-present it by a specified subsequent date;
(c) who have satisfied the examiners in all the courses but have presented an unsatisfactory dissertation may be permitted to revise the dissertation and re-present it by a specified subsequent date.

MUA10 Candidates who are unable because of their illness to be present for one or more papers in any written examination may apply for permission to present themselves at a supplementary examination to be held before the beginning of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidates’ absence from the examination.

MUA11 Candidates who
(a) are not permitted to present themselves for re-assessment in any course(s) in which they have failed to satisfy the examiners or to revise and re-present their capstone report or dissertation; or
(b) have failed to satisfy the examiners in a second attempt in any course(s) or in their capstone report or dissertation; or
(c) have exceeded the maximum period of registration specified in these regulations of the degree. shall be recommended for discontinuation of their studies.

Grading system

MUA12 Courses shall be graded according to letter grades, their standards and the grade points for assessment as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Standard</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>Excellent</td>
<td>4.3</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>A-</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>Good</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>B-</td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>Satisfactory</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>C-</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>D+</td>
<td>Pass</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>Fail</td>
<td>0</td>
</tr>
</tbody>
</table>

Assessment results

MUA13 On successful completion of the curriculum, candidates who have shown exceptional merit may be awarded a mark of distinction, and this mark shall be recorded in the candidates’ degree diploma.
SYLLABUSES FOR THE DEGREE OF
MASTER OF SCIENCE IN URBAN ANALYTICS
(MSc(UrbanAnalytics))

(“The syllabuses are applicable to candidates admitted to the Master of Science in Urban Analytics Curriculum in the 2020-21 academic year and thereafter”)

(SEE ALSO GENERAL REGULATIONS AND REGULATIONS FOR TAUGHT POSTGRADUATE CURRICULA)

1. CURRICULUM STRUCTURE

The curriculum shall include assessment of the prescribed courses subject to the approval of the Head of the Department of Urban Planning and Design and a Dissertation/Capstone Project. Candidates are required to complete a total of 69 credits of courses.

The curriculum shall normally extend over two academic years of part-time study. Candidates shall not be permitted to extend their studies beyond the maximum period of registration of four academic years of part-time study, unless otherwise permitted or required by the Board of the Faculty.

Candidates are required to follow courses of instruction and satisfy the examiners in each of the following seven Urban Analytics Courses:

- Foundations in Spatial Data Analysis
- Geographic Information System (GIS) for Urban and Regional Planning and Development
- Urban Big Data Analytics
- Programming and AI for Future Cities
- Spatial Mobilities Analytics
- Public Space Design Analytics
- Science of Cities

and a total of 12 credits of Urban Theory Courses as selected from a list approved by the Department from time to time. Candidates’ selection of courses shall be approved by the Head of the Department. In addition, candidates are required to complete satisfactorily a Dissertation/Capstone Project on a date to be specified by the Head of the Department.

2. ASSESSMENT

Each of the courses followed by candidates is examined either by an assessment of coursework, or by a combination of coursework assessment and a written examination. To complete the curriculum, candidates shall satisfy all the assessments and the relevant requirements prescribed in the Regulations for the Degree of Master of Science in Urban Analytics.
3. COURSE LIST

Urban Analytics Courses

URBA6001. Foundations in Spatial Data Analysis (6 credits)

Spatial data has become indispensable for building a smart city, particularly in city planning, design and management. This involves new means of capturing spatial data by different types of sensors, advanced application of Artificial Intelligence (AI) and rapid development of spatial analytics in the area of Geographic Information System (GIS) and Building Information Modelling (BIM). The main objective of this course is to equip students from relevant disciplines (e.g. land use planning, surveying, architecture, landscape architecture, engineering, environmental science and social sciences) with foundational knowledge and techniques on spatial data analysis.

Assessment: 50% continuous coursework assessment; 50% examination

URBP6017. Geographic information system (GIS) for urban and regional planning development (6 credits)

This course introduces the basic concepts and methods in the use of geographic information system as a spatial planning support system in different areas of urban and regional planning and development. It examines the basic principles and functions of geographic information system in data input, manipulation, retrieval, visualization and modelling of geographical data for supporting spatial planning decisions.

Assessment: 100% continuous coursework assessment

URBA6002. Urban Big Data Analytics (6 credits)

This course further develops students’ knowledge and skills in handling, analysing and modelling urban data, especially big data. Students will learn conceptual frameworks for analysing and modelling urban issues, methodologies and software tools for processing and modelling urban data; as well as applying urban models and analytics to empirical cases. The aim of this course is to equip students with advanced urban modelling and analytics to explain current urban conditions and predict future urban changes beyond the smart era.

Assessment: 70% continuous coursework assessment; 30% examination
Prerequisite: URBP 6017 Geographic Information System for Urban and Regional Planning and Development

URBA6003. Programing and AI for Future Cities (6 credits)

This course provides an introduction to programming, computational thinking, and artificial intelligence (AI), which have become essential skills in the fields of smart cities and urban science. Students are expected to reflect how software, data, smart technologies, and AI are becoming integral to future smart cities; learn key concepts, algorithms, and data structures; acquire skills and experiences in computer programming; and understand how programming can be applied to solve urban problems.
URBA6004. Spatial Mobilities Analytics (6 credits)

This course discusses how space, society (institutions) and accessibility are related and how accessibility should be defined, analysed and designed/improved in light of the existing, possible or proposed spatial arrangements of socially valued goods, services and opportunities, which are embedded in, and shaped by social norms, values and institutions. It argues that complex relationships exist between space, society and accessibility, which should be accounted for in related policy/planning interventions. Students will learn to understand, analyze, manage and harmonise such relationships to deliver desirable outcomes such as efficiency, equity, quality of life and sustainability.

Assessment: 60% continuous coursework assessment; 40% examination
Prerequisite: URBP 6017 Geographic Information System for Urban and Regional Planning and Development

URBA6005. Public Space Design Analytics (6 credits)

The key concerns of this course are public and common space in relationship to activity space that span over street, estate, neighborhood, district, and beyond by age and socio-economic group: how to enhance future public space. This course discusses four questions in relationship to public space exploring the role of theories, urban science, smart technologies, and urban analytics. Researching the future of public space is integral to the course: how to engage with the demand/supply constrains through innovative design solutions including walkability, “street” design, public and private quasi-public, open and green space both in Hong Kong and internationally.

Assessment: 60% continuous coursework assessment; 40% examination
Prerequisite: URBP 6017 Geographic Information System for Urban and Regional Planning and Development

URBA6006. Science of Cities (6 credits)

This course introduces fundamental theories and models for an emerging field of urban sciences, with emphasis on the urban economics, regional science, and spatial planning literature. The primary goal of this course is to strengthen students’ theoretic and scientific bases for cities and regions as a prerequisite for the mastery of advanced data analytics or urban modelling techniques. A thorough understanding of the city and the system of cities is essential in developing expertise in urban science, and taking advantage of advanced data analytics and modeling tools would not be possible without the former.

Assessment: 100% continuous coursework assessment

Urban Theory Courses
Students are required to take two courses from the following list.

URBP6901. Values in Planning (6 credits)
This course provides a comprehensive overview of the theoretical basis of urban and regional planning. It examines the nature and value of the planning process through different theoretical paradigms. Through active class deliberations on issues surrounding the roles and definitions of knowledge, the public interest, equal opportunities and ethics in the planning process, students will develop their own value system in planning.

Assessment: 100% continuous coursework assessment

MHMP8008. Transitional Cities: Urban and Housing Development (6 credits)

Building upon comparative concepts and introductory materials of local knowledge, this course aims to provide students with the opportunity to explore contemporary urban changes both in the countries that are undergoing the transition from the planned to a market-oriented economy and in newly industrialised economies. The course has a regional focus on cities in Pacific Asia, in particular Chinese cities, and cities in Central and Eastern Europe. By the end of the course, students should be able to gain an empirical understanding of diverse local contexts and to broaden the concepts discussed in urban and housing studies.

Assessment: 100% continuous coursework assessment

Urban design and real estate engage the complex mechanisms of environmental and social capital in relation to finance and economics, by seeing design and built environment investment as intrinsically associated with economics and values. The course is an introduction to the issues arising of these associations: what roles urban economics play in urban design? From regional and spatial economics to spatial initiatives and governance to approaches to values in urban design. Conversely how urban design visioning can have impacts on economics, financial investment and values, including added environmental, social, cultural and aesthetic values?

Assessment: 100% continuous coursework assessment

MUDP1030. Morphologies & Urban Design Theories (6 credits)

This course provides an introduction to the three natures of urban morphology: natural, built environment, institutional configurations and urban design theories. Introduction to urban morphologies will examine key concepts, the study of the formation of urban fabric, the relationship of these components through time and at different spatial scales in local and international contexts. Urban design theories describe the state of the art of research about the relationship between urban morphology and human effects and other impacts referenced to the key historical urban design thinkers.

Assessment: 100% continuous coursework assessment

Dissertation/Capstone Project

Students can choose between a dissertation and a capstone project. The capstone project is delivered through a smart planning and design studio.

URBA6401. Dissertation (15 credits)
The dissertation aims to provide students with opportunities to integrate the acquired knowledge, skills, and techniques to support and enhance urban policy, or to investigate the urban and societal implications and impacts of changed planning and design practices under the advancement of smart technologies. Each student is assigned a dissertation supervisor from among the teachers contributing to the programme. Briefings on research proposal, research design, and methodology/methods will be provided to facilitate dissertation preparation. Individual students are required to defend their research proposals and regularly report their progress to their assigned supervisors. The dissertation should be between 15,000 to 20,000 words in length.

Assessment: 100% continuous coursework assessment
Prerequisite: URBP 6017 Geographic Information System for Urban and Regional Planning and Development

URBA6402. Smart Planning and Design Studio (15 credits)

This studio comprising a community and a strategic component respectively and relatedly is designed to enhance students’ abilities to apply smart city science theories and technologies such as Artificial Intelligence (AI), BIM, and GIS in the strategic and community planning processes. Special emphasis is put on working with the local community throughout the processes to reach sustainable, balanced and integrated planning/design outcomes. A topic of a local scale and another on related territorial scale will be chosen for students to develop community and strategic planning/design intervention. Students will work in groups, simulating a consultancy task force situation and applying advanced technologies in the processes of data collection, development option and/or policy formulation, evaluation and recommendation.

Assessment: 100% continuous coursework assessment
Prerequisite: URBP 6017 Geographic Information System for Urban and Regional Planning and Development