REGULATIONS FOR THE DEGREES OF
MASTER OF SCIENCE IN ENGINEERING (MSc[Eng])
MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]), AND
MASTER OF SCIENCE IN ELECTRONIC COMMERCE AND INTERNET COMPUTING
(MSc[ECom&IComp])

(Applicable to students admitted in the academic year 2018-19 and thereafter)
(See also General Regulations and Regulations for Taught Postgraduate Curricula)

The degrees of MSc(Eng), MSc(CompSc) and MSc(ECom&IComp) are each a postgraduate degree
awarded for the satisfactory completion of a prescribed curriculum in the Faculty of Engineering.

For the MSc(Eng) degree, the major part of the curriculum must include courses offered in one of the
following fields: building services engineering, electrical and electronic engineering, energy engineering,
environmental engineering, geotechnical engineering, industrial engineering and logistics management,
infrastructure project management, mechanical engineering, structural engineering, and transportation
engineering.

The MSc(Eng), MSc(CompSc) and MSc(ECom&IComp) curricula are offered in part-time and full-time
modes.

MSc 1 Admission requirements
To be eligible for admission to the curriculum leading to the degree of MSc(Eng) / MSc(CompSc) /
MSc(ECom&IComp), a candidate shall:

(a) comply with the General Regulations;
(b) comply with the Regulations for Taught Postgraduate Curricula;
(c) hold (i) a Bachelor's degree of this University in a relevant field; or
(ii) a relevant qualification of equivalent standard from this University or from another
university or comparable institution accepted for this purpose; and
(d) satisfy the examiners in a qualifying examination if required.

MSc 2 Qualifying Examination

(a) A qualifying examination may be set to test the candidate's academic ability or his/her ability
to follow the curriculum prescribed. It shall consist of one or more written papers or their
equivalent and may include a dissertation.

(b) A candidate who is required to satisfy the examiners in a qualifying examination shall not be
permitted to register until he/she has satisfied the examiners in the examination.

MSc 3 Period of Study
The curriculum of the degree of MSc(Eng)/MSc(CompSc)/MSc(ECom&IComp) shall normally extend
over one academic year of full-time study or two academic years of part-time study. Candidates shall
not be permitted to extend their studies beyond the maximum period of registration of two academic years of full-time study or three academic years of part-time study, unless otherwise permitted or required by the Board of Faculty. For both full-time and part-time modes, the period of study shall include any assessment to be held during and/or at the end of each semester.

MSc 4 Curriculum Requirements
To complete the curriculum, a candidate shall, within the prescribed maximum period of registration stipulated in Regulation MSc3 above:

(a) satisfy the requirements prescribed in TPG6 of the Regulations for Taught Postgraduate Curricula;
(b) take not fewer than 72 credits of courses, in the manner specified in these regulations and syllabuses and pass all courses as specified in the syllabuses;
(c) follow courses of instruction and complete satisfactorily all prescribed practical / laboratory work; and
(d) satisfy the examiners in all forms of assessment as may be required in either
 (i) 72 credits of courses which must include a dissertation of 24 credits or a project of 12 credits as capstone experience; or
 (ii) at least 60 credits of courses successfully completed at this University (which must include a dissertation of 24 credits or a project of 12 credits) and not more than 12 credits of courses successfully completed at this or another university before admission to the MSc(Eng) / MSc(CompSc) / MSc(ECom&IComp) and approved by the Board of the Faculty.

MSc 5 Dissertation or project report
(a) A candidate who is permitted to select a dissertation or a project is required to submit the dissertation or the project report by a date specified by the Board of Examiners.
(b) All candidates shall submit a statement that the dissertation or the project report represents his/her own work undertaken after the registration as a candidate for the degree.

MSc 6 Selection of Courses
(a) A candidate shall select courses according to the guidelines stipulated in the syllabuses for the degree of MSc(Eng)/MSc(CompSc)/MSc(ECom&IComp).
(b) Selection of study patterns, as stipulated in the respective syllabus, shall be subject to the approval of the Head of the Department concerned.
(c) Candidates shall select their courses in accordance with these regulations and the guidelines specified in the syllabuses before the beginning of each academic year.
(d) Changes to the selection of courses may be made only during the add/drop period of the semester in which the course begins, and such changes shall not be reflected in the transcript of the candidate.
(e) Subject to the approval of the Committee on Taught Postgraduate Curricula on the recommendation of the Head of the Department concerned, a candidate may in exceptional circumstances be permitted to select additional course(s).
(f) Requests for changes after the designated add/drop period of the semester shall be subject to the approval of the Committee on Taught Postgraduate Curricula. Withdrawal from courses beyond the designated add/drop period will be subject to the approval of the Committee on Taught Postgraduate Curricula.

MSc 7 Assessment

(a) The written examination for each course shall be held after the completion of the prescribed course of study for that course, and not later than January, May or August immediately following the completion of the course of study for that course unless otherwise specified in the syllabuses.

(b) A candidate, who is unable to complete the requirements within the prescribed maximum period of registration specified in Regulation MSc3 because of illness or circumstances beyond his/her control, may apply for permission to extend his/her period of studies.

(c) A candidate who has failed to satisfy the examiners in any course(s) is required to make up for failed course(s) in the following manners:
 (i) undergoing re-assessment/re-examination in the failed course(s); or
 (ii) repeating the failed course(s) by undergoing instruction and satisfying the assessments; or
 (iii) taking another course in lieu and satisfying the assessment requirements.

(d) A candidate who has failed to satisfy the examiners in his/her dissertation or project report may be required to submit or resubmit a dissertation or a project report on the same subject within a period specified by the Board of Examiners.

(e) In accordance with G9(h) of the General Regulation and TPG8(d) of the Regulations for Taught Postgraduate Curricula, there shall be no appeal against the results of examinations and all other forms of assessment.

MSc 8 Grading system

Individual courses shall be graded according to the following grading system as determined by the Board of Examiners:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Grade</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>A+</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>A-</td>
<td>3.7</td>
</tr>
<tr>
<td>Good</td>
<td>B+</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>B-</td>
<td>2.7</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>C+</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>C-</td>
<td>1.7</td>
</tr>
<tr>
<td>Pass</td>
<td>D+</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1.0</td>
</tr>
<tr>
<td>Fail</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>
MSc 9 Discontinuation of Studies
Unless otherwise permitted by the Board of the Faculty, a candidate will be recommended for discontinuation of their studies in accordance with General Regulation G12 if he/she has:

(a) failed to pass 12 credits in an academic year; or
(b) failed to satisfy the examiners at a second attempt in his/her dissertation or project report within the specified period; or
(c) failed to achieve a cumulative grade point average* (CGPA) of 1.0 or higher for two consecutive semesters with course enrolment; or
(d) exceeded the maximum period of registration specified in Regulation MSc3.

* At the end of each semester, a cumulative grade point average (CGPA) for all courses, except cross-listed undergraduate courses and outside curriculum requirement optional courses as specified in the syllabuses, taken by a student (including failed courses) at the time of calculation is computed.

MSc 10 Advanced Standing
Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum in accordance with TPG3 of the Regulations for Taught Postgraduate Curricula. Candidates who are awarded Advanced Standing will not be granted any further credit transfer for those studies for which Advanced Standing has been granted. The amount of credits to be granted for Advanced Standing shall be determined by the Board of the Faculty, in accordance with the following principles:

(a) a candidate may be granted a total of not more than 20% of the total credits normally required under a curriculum for Advanced Stranding unless otherwise approved by the Senate; and
(b) credits granted for advanced standing shall not be included in the calculation of the GPA but will be recorded on the transcript of the candidate.

MSc 11 Award of Degree
To be eligible for the award of the degree of MSc(Eng) / MSc(CompSc) / MSc(ECom&IComp), a candidate shall:

(a) comply with the General Regulations and the Regulations for Taught Postgraduate Curricula;
(b) complete the curriculum and satisfy the examiners in accordance with the regulations set out; and
(c) achieve a cumulative grade point average (CGPA) of 1.0 or higher

MSc 12 Assessment results
On successful completion of the curriculum, candidates who have shown exceptional merit of achieving a cumulative grade point average (CGPA) of 3.6 or higher may be awarded a mark of distinction, and this mark shall be recorded on the candidates’ degree diploma.
SYLLABUS FOR THE DEGREE OF MASTER OF SCIENCE IN ELECTRONIC COMMERCE AND INTERNET COMPUTING

(Applicable to students admitted to the curriculum in the academic year 2019-20 and thereafter)

Definition and Terminology

Discipline course – any course on a list of courses in the discipline of curriculum which a candidate must pass at least a certain number of credits as specified in the Regulations.

Fundamental course – any course in a subset of discipline courses which are considered fundamental or important in the curriculum which a candidate must pass at least 24 credits.

Elective course – any Taught Postgraduate level course offered by the Departments of the Faculty of Engineering for the fulfilment of the curriculum requirements of the degree of MSc in Electronic Commerce and Internet Computing that are not classified as discipline courses.

Capstone Experience – a 12-credit case study project or a 24-credit dissertation which is an integral part of the curriculum focusing on the integration and application of knowledge and skills that candidates have acquired throughout their studies.

Curriculum Structure

Candidates are required to complete 72 credits of courses as set out below, normally over one academic year of full-time study or two academic years of part-time study:

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Enrolment Mode of 10 courses + Case study project</th>
<th>Enrolment Mode of 8 courses + Dissertation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Credits</td>
<td>No. of Credits</td>
</tr>
<tr>
<td>Discipline Courses</td>
<td>Not less than 48 [Include at least 24 credits in Fundamental courses]</td>
<td>Not less than 36 [Include at least 24 credits in Fundamental courses]</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>Not more than 12</td>
<td>Not more than 12</td>
</tr>
<tr>
<td>Capstone Experience</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>72</td>
</tr>
</tbody>
</table>

Enrolment Mode

Candidates are required to successfully complete 72 credits to graduate. They can do that by studying in one of the following enrolment modes:

(a) 10 courses (each equivalent to 6 credits) + Case study project (equivalent to 12 credits) OR
(b) 8 courses (each equivalent to 6 credits) + Dissertation (equivalent to 24 credits)
Course Selection

Candidates shall select courses in accordance with the regulations of the degree. In addition, the MSc(ECom&IComp) curriculum has the following guidelines on course selection.

i. Candidates have to complete at least 4 courses (at least 24 credits in total) from the following list of fundamental courses:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOM6004</td>
<td>Legal aspects of IT and e-commerce</td>
</tr>
<tr>
<td>ECOM6008</td>
<td>Supply chain and e-logistics management</td>
</tr>
<tr>
<td>ECOM6013</td>
<td>E-commerce technologies</td>
</tr>
<tr>
<td>ECOM6029</td>
<td>E-business transformation</td>
</tr>
<tr>
<td>ICOM6012</td>
<td>Internet infrastructure technologies</td>
</tr>
<tr>
<td>ICOM6034</td>
<td>Website engineering</td>
</tr>
<tr>
<td>ICOM6045</td>
<td>Fundamentals of e-commerce security</td>
</tr>
<tr>
<td>ICOM6046</td>
<td>Semantic data architecture</td>
</tr>
</tbody>
</table>

ii. Candidates can select any courses in MSc(ECom&IComp) discipline, which are listed in the course descriptions section below. These can be a mixture of courses from ECOM and/or ICOM subject area(s) and some selected COMP and/or FITE courses.

iii. Candidates may also in exceptional circumstances select at most 2 courses (at most 12 credits in total) offered by other taught postgraduate curricula in the Faculty of Engineering as electives. All course selection will be subject to approval by the Course Coordinators concerned.
The following is a list of discipline courses offered by the Department of Computer Science for the MSc(ECom&IComp) curriculum.

It is the goal of the programme to have a comprehensive and dynamic curriculum in order to meet the challenges and opportunities of the fast developing Internet world. Therefore the courses, both in terms of range and syllabus, are updated and revised continuously and are subject to the approval of the University's Senate. The list of courses below is not final and some courses may not be offered every year.

All courses are assessed through examination and/or coursework assessment, the weightings of which are subject to approval by the Board of Examiners.

ECOM6004. Legal aspects of I.T. and e-commerce (6 credits)

This course provides an introduction to some of the main legal problems generated by recent developments in information technology and e-commerce, and their possible solutions. Topics to be covered include, but are not limited to, copyright, domain name disputes and other intellectual property issues on the Internet, contractual issues of on-line trading, public key infrastructure and electronic transactions, privacy and data protection.

Mutually exclusive with: COMP7901 Legal protection of digital property

ECOM6008. Supply chain and e-logistics management (6 credits)

The course is designed to prepare you to apply business strategies, analytical methodologies and information technology in supply chain management. Traditionally industries have focussed on operation evaluation and performance improvement of mainly the manufacturing process; however, the deficiency of supply chain coordination results in severe downgrade of business competitiveness. With advent of information technology, computers not only improve manufacturing operation and management and also strategic decision-making as well. This course focuses on the systems approach to the planning, analysis, design, development, and evaluation of supply chain and e-logistics management.

ECOM6013. E-commerce technologies (6 credits)

This course provides an overview of technologies currently used in electronic commerce and an introduction to some likely to play a major role in the future. Topics include (but are not limited to) Internet & e-commerce infrastructure, e-commerce presence & development life cycle, web design & implementation, mobile commerce technology, Internet & e-commerce security, electronic payment systems, blockchain & cryptocurrencies, AI & machine learning, smart city & IoT, e-commerce technology trends.

ECOM6014. E-marketing (6 credits)

This course considers how to create customer centric strategies for e-businesses. Marketing focuses on the interaction between the producer and the consumer. This focus remains unchanged in e-marketing, but our ability to foster this interaction with technology has been dramatically increased. The Internet provides new forms of communications like web sites, e-mail, social media, and mobile communications. However, these technologies do not necessarily replace traditional marketing vehicles like mass media, direct mail, and telephone marketing, but instead augment them to improve the
customer experience. The basic premise of this course is that these technologies can be used to fulfill the goal of a customer-centered marketing strategy.

The goal for this course is to develop a set of principles so that managers can effectively develop and implement e-marketing strategies. A core framework that we will use in this course is an interactive marketing strategy. Interactive marketing goes by many names, including customer relationship management (CRM). E-marketing allows companies to interact with consumers on an individual basis and create customized products and services using personalized knowledge about a consumer. As part of this course we develop a compatible set of quantitative techniques to implement interactive marketing strategies. Throughout the course we explore examples and cases to understand how e-marketing is evolving in practice.

ECOM6016. Electronic payment systems (6 credits)

The course covers banking systems, e-payment security, foreign exchange, Internet banking, mobile payments, credit and stored-value cards, Octopus, micropayments, peer-to-peer payments, cryptocurrencies, blockchain, large-scale B2B payments, faster (instant) payments, seamless shopping and the future of money. Particular attention is given to Hong Kong and Mainland China banking and payment systems.

ECOM6022. Topics in electronic commerce (6 credits)

This course covers advanced topics in areas in electronic commerce that are relevant at the time. Leaders in the field, expert practitioners and distinguished scholars in the field around the world will be invited to participate in this course.

ECOM6023. E-financial services (6 credits)

This course provides students with the fundamentals of financial services in the context of e-Commerce and mobile devices. Payment systems in general and various payment transaction systems in particular will be examined. Similarly, eFinance has brought new concepts into e-Brokerage, e-Insurance, e-Lending and other fields. The course covers technology, operations, customer experience as well as demonstrates how regulations and security aspects are impacted by developments like Bitcoin and Blockchain. Studies of established banks as well as new FinTech Players serve as examples and reinforcements for many of the concepts.

ECOM6029. E-business transformation (6 credits)

eCommercehas shortened business transaction cycles, expanded market reach, and allowed companies to build and manage customer relationship more effectively. Companies need to transform their business model periodically with an eye to improving their operational effectiveness, entrenching their strategic position, and ultimately sustaining their competitive advantage.

As change is inseparable from life, and thus strategic advantage by definition transient, transformation and innovation are inseparable from business survival. In order to thrive, businesses have to manage their processes effectively, revisit their value propositions periodically, and at times change their business model entirely. Innovation and transformational initiatives, however, are difficult to implement and prone to failure as companies must grapple with a whole host of strategic, organizational, psychological and increasingly global issues.
This course builds on the basic principles of cognitive science, business and economics to examine the role of change as a strategic necessity. It provides a roadmap for transforming companies into inter-networked enterprises where proprietary and shared infrastructures are used to link customers, suppliers, partners and employees to create superior economic value. You will learn how the Internet can provide firms with the necessary infrastructure needed to align their business strategy with IT strategy, streamline front-end and back-end processes, manage relationships and partnerships, and adapt to emerging global issues such as outsourcing and offshoring. In the process you will learn about the nature of change and business complexity and gain a better appreciation of the nature of organizational failure.

The course pays special attention to the adverse effects of cognitive biases in the transformation process by looking into the inner workings of the brain to understand, among other things, why we prefer the status quo and generally resist change, why we regularly act rationally irrational, why we cannot usually break away from our entrenched mental models to think creatively.

ECOM7121. Dynamic digital capabilities (6 credits)

This course covers the fundamental business and economic principles of dynamic digital capabilities as well as mobile platform innovation. It provides a systematic framework, cases and hands-on experience. It is designed to guide managers, developers, engineers and graduate students in the development of transformative digital and smartphone business models and capability-building. Cases include multinational corporations, entrepreneurial startups, emerging unicorns, nonprofit and government worldwide.

ECOM7122. Entrepreneurship development and FinTech ventures in Asia (6 credits)

This course provides an intense and mentored hands-on experiential learning opportunity where highly motivated entrepreneurial teams of students can be guided in Lean Startup techniques and learn interactively while helping analyze, expand and pivot already-award-winning early stage ventures.

We will focus on FinTech Ventures and Ecosystems in Asia, a high priority area for the Hong Kong government and China, where the online transaction volume of online giants like AliPay and WeChat already eclipses traditional banks and financial institutions.

ECOM7123. Building smart cities: an information system approach (6 credits)

Hong Kong, like a number of cities in China and overseas, is following global trend to develop and transform herself into a smart city. The concept of a smart city is based on the application of ICT in various domains of the city to connect and integrate the systems and services of the city for better synergy and efficient use of resources. The vast amount of real-time data generated by smart sensors can be integrated with the modern information and communication technologies, useful information and insights can then be derived by analytic techniques to optimize and automate city management. Productivity can be boosted and sustainability can be ensured based on the effective collection, delivery and manipulation of the information in smart cities by innovative applications. The ultimate goal of smart city development is to improve people’s quality of life and support the development of innovation and business enterprises.

This course presents an overview and the core concepts and techniques of building smart cities by utilizing the technologies like Geographic Information Systems (GIS), Location Intelligence, Open Data, Common Spatial Data Infrastructure (CSDI), Big Data analytics, Internet of Things (IoT) , Artificial Intelligence (AI) etc., that are indispensable to the development and effective management of the key components of smart cities. Key components of smart cities in the Smart City Wheel and
various development stages will be discussed in details and current and potential technologies facilitating smart city development will be introduced. Students will not only learn the concepts but also real applications being developed or used in smart cities. A series of guest lectures will be arranged for our students to understand more about the actual implementations of smart city projects in various industries in Hong Kong.

ECOM7124. Mobile and IoT computing services and applications (6 credits)

With nearly 5 billion mobile phone users worldwide, including well over 2 billion smartphone users, new mobile and IoT technologies are driving the development of a slew of new products and services. This course introduces students to the technologies, applications, services and business models associated with the mobile Internet and the Internet of Things (“IoT”). This includes looking at underlying technologies as well as important usability, security, privacy and business considerations, and learning to appreciate and analyze the challenges and tradeoffs they entail. The course also provides an overview of future trends and ongoing research in this new and fast growing area.

ECOM7000. Dissertation (24 credits)

The dissertation project is to provide an opportunity for the student to dive in depth into either a business case and/or a technology development in the e-commerce and Internet computing, and apply their body of knowledge learned in the programme to implement the business plan and/or the relevant technology to demonstrate its feasibility in a real or simulated business environment. This would involve substantive research into the chosen business plan and/or technology, implement and evaluate the proposed business plan or technology. Finally consolidate the findings and conclusion in the dissertation, and demonstrate the project result.

ECOM7001. Case study project (12 credits)

The case study project is to provide an opportunity for the student to dive in depth into either a business case or a technology development in the e-commerce and Internet computing, and apply their body of knowledge learned in the programme to understand and critically analysis the particular case. This would involve substantive research into the “Subject”, collect appropriate data by suitable means, research into reports and publicly available information, and consolidate their findings and conclusion in a case study report.

ICOM6012. Internet infrastructure technologies (6 credits)

This course takes a systematic approach to study the various components which form the infrastructure of the Internet. It provides a comprehensive coverage of existing and emerging Internet technologies and applications. Topics include: access and backbone network technologies; IP addressing and routing architectures; standard transport and application protocols; operating principles and internals of network entities. We will focus not only on how the Internet works but also its design rationale and engineering tradeoffs.

ICOM6027. E-crimes: digital crime scenes and legal sanctions (6 credits)

This course helps participants to grapple with crimes in the electronic age from both technical and legal points of view. It addresses three important aspects of the subject, namely, technologies adopted in e-crimes, legal sanctions and management of e-crimes scenes. Topics covered include: trends in e-crimes; different types of e-crimes, tools and technologies for committing e-crimes; laws relating to e-crimes
and criminal sanctions; digital forensics, post-incident and live-forensic crime scene management, chain of evidence, collecting and collating digital evidence.

ICOM6029. Topics in Internet computing (6 credits)

This course covers advanced topics in areas in Internet computing that are relevant at the time. Leaders in the field, expert practitioners and distinguished scholars in the field around the world will be invited to participate in this course.

ICOM6034. Website engineering (6 credits)

This course will introduce the standards, the software technologies and some good practices for implementing websites and web applications. It aims at covering an "end-to-end" picture of content delivery and presentation on the web, that is, from the "server-sides" where data is stored, adapted or integrated, to the "client-sides" with various demands and capabilities. It will suit students who wish to have a technical understanding on the subject or a career in website engineering, as it will introduce the techniques for building maintainable, extensible, interactive and mission-critical websites and web applications, using state-of-the-art standards and open-source tools.

The topics covered will be organized into four parts: (1) Website development basics (enabling standards and technologies, responsive web design, basic web security); (2) Design and implementation of web applications (rich Internet applications, client-side frameworks, MVC design patterns and libraries, content management systems); (3) Interoperability of web applications and services (web API protocols, mashups, cloud services for web development); and (4) Optimizations (traffic analysis, search engine and performance optimization techniques).

ICOM6044. Data science for business (6 credits)

The emerging discipline of data science combines statistical methods with computer science to solve problems in applied areas. In this case we focus on how data science can be used to solve business problems especially those in electronic commerce. By its very nature e-commerce is able to generate large amounts of data and data mining methods are quite helpful for managers in turning this data into knowledge which in turn can be used to make better decisions. These data sets and their accompanying quantitative methods have the potential to dramatically change decision making in many areas of business. For example, ideas like interactive marketing, customer relationship management, and database marketing are pushing companies to utilize the information they collect about their customers in order to make better marketing decisions.

This course focuses on how data science methods can be applied to solve managerial problems in marketing and electronic commerce. Our emphasis is developing a core set of principles that embody data science: empirical reasoning, exploratory and visual analysis, and predictive modeling. We use these core principles to understand many methods used in data mining and machine learning. Our strategy in this course is to survey several popular techniques and understand how they map into these core principles. These techniques are illustrated with case studies. However, the emphasis is not on the software for implementing these techniques but on understanding the inputs and outputs of these techniques and how they are used to solve business problems.
ICOM6045. Fundamentals of e-commerce security (6 credits)

This course provides an in-depth understanding of basic security problems and relevant e-commerce solutions, while helping students implement today’s most advanced security technologies, such as designing secure Web, e-commerce, and mobile commerce applications, securing corporate internal network, and providing secure employee/user authentication.

Key topics include: Security mechanisms, key management and certificates, payment security services, communication network and network access layer security, Internet layer security and transport layer security, application layer security, hypertext transfer protocol, web server security, web client security, mobile code security, mobile agent security, mobile commerce security.

Mutually exclusive with: COMP7906 Introduction to cyber security

ICOM6046. Semantic data architecture (6 credits)

This course covers enterprise approaches for designing data architectures, data models, and data management governance for interoperable information systems. The course will develop skills to understand and apply data architecture methodologies and frameworks, including structured modelling and data representation, that underpin global data standards. The course has a focus on semantic web technologies including linked open data, ontologies, and reasoning that are the foundations for graph-based data systems.

ICOM7125. Digital forensics (6 credits)

This course serves as an introduction to students about current concepts and methodologies in conducting digital forensics investigation. It gives an overview of post-mortem digital forensics analysis, network forensics analysis, mobile forensics analysis as well as live forensics analysis and provides students with hands-on experience of identifying, acquiring, preserving, analysing and presenting digital evidence.

COMP7404. Computational intelligence and machine learning (6 credits)

This course will teach a broad set of principles and tools that will provide the mathematical, algorithmic and philosophical framework for tackling problems using Artificial Intelligence (AI) and Machine Learning (ML). AI and ML are highly interdisciplinary fields with impact in different applications, such as, biology, robotics, language, economics, and computer science. AI is the science and engineering of making intelligent machines, especially intelligent computer programs, while ML refers to the changes in systems that perform tasks associated with AI. Ethical issues in advanced AI and how to prevent learning algorithms from acquiring morally undesirable biases will be covered.

Topics may include a subset of the following: problem solving by search, heuristic (informed) search, constraint satisfaction, games, knowledge-based agents, supervised learning, unsupervised learning; learning theory, reinforcement learning and adaptive control and ethical challenges of AI and ML.

Pre-requisites: Nil, but knowledge of data structures and algorithms, probability, linear algebra, and programming would be an advantage.
COMP7407. Securities transaction banking (6 credits)

The course introduces the business and technology scenarios in the field of transaction banking for financial markets. It balances the economic and financial considerations for products and markets with the organizational and technological requirements to successfully implement a banking function in this scenario. It is a crossover between studies of economics, finance and information technology and features the concepts from basics of the underlying financial products to the latest technology of tokenization of assets on a Blockchain.

COMP7802. Introduction to financial computing (6 credits)

This course introduces the students to different aspects of financial computing in the investment banking area. The topics include yield curve construction in practice, financial modelling and modern risk management practice, etc. Financial engineering is an area of growing demand. The course is a combination of financial product knowledge, financial mathematics and computational techniques. This course will be suitable for students who want to pursue a career in this fast growing area.

Prerequisites: This course does not require any prior knowledge in the area of finance. Basic calculus and numeric computational techniques are useful. Knowledge in Excel spreadsheet operations is required to complete the assignments and final project.

COMP7901. Legal protection of digital property (6 credits)

This course introduces computer professionals to the various legal means of protecting digital property including computer software, algorithms, and any work or innovation in digital form. Focus is on the main issues in protecting digital property arising from developments in information technology, and their legal solutions. Topics covered include, but are not limited to, the following: 1) copyright protection of software and websites, 2) patent protection of software and algorithms, 3) protection of personal data.

Mutually exclusive with: ECOM6004 Legal aspects of IT and e-commerce

FITE7410. Financial fraud analytics (6 credits)

This course aims at introducing various analytics techniques to fight against financial fraud. These analytics techniques include, descriptive analytics, predictive analytics, and social network learning. Various data set will also be introduced, including labeled or unlabeled data sets, and social network data set. Students learn the fraud patterns through applying the analytics techniques in financial frauds, such as, insurance fraud, credit card fraud, etc.

Key topics include: Handling of raw data sets for fraud detection; Applications of descriptive analytics, predictive analytics and social network analytics to construct fraud detection models; Financial Fraud Analytics challenges and issues when applied in business context.

Required to have basic knowledge about statistics concepts.
SYLLABUS FOR THE DEGREE OF MASTER OF SCIENCE IN ELECTRONIC COMMERCE AND INTERNET COMPUTING

(Applicable to students admitted to the curriculum in the academic year 2017-18 and 2018-19)

Definition and Terminology

Discipline course – any course on a list of courses in the discipline of curriculum which a candidate must pass at least a certain number of credits as specified in the Regulations.

Fundamental course – any course in a subset of discipline courses which are considered fundamental or important in the curriculum which a candidate must pass at least 24 credits.

Elective course – any Taught Postgraduate level course offered by the Departments of the Faculty of Engineering for the fulfilment of the curriculum requirements of the degree of MSc in Electronic Commerce and Internet Computing that are not classified as discipline courses.

Capstone Experience – a 12-credit case study project or a 24-credit dissertation which is an integral part of the curriculum focusing on the integration and application of knowledge and skills that candidates have acquired throughout their studies.

Curriculum Structure

Candidates are required to complete 72 credits of courses as set out below, normally over one academic year of full-time study or two academic years of part-time study:

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Enrolment Mode of 10 courses + Case study project</th>
<th>Enrolment Mode of 8 courses + Dissertation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Credits</td>
<td>No. of Credits</td>
</tr>
<tr>
<td>Discipline Courses</td>
<td>Not less than 48 [Include at least 24 credits in Fundamental courses]</td>
<td>Not less than 36 [Include at least 24 credits in Fundamental courses]</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>Not more than 12</td>
<td>Not more than 12</td>
</tr>
<tr>
<td>Capstone Experience</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>72</td>
</tr>
</tbody>
</table>

Enrolment Mode

Candidates are required to successfully complete 72 credits to graduate. They can do that by studying in one of the following enrolment modes:
(a) 10 courses (each equivalent to 6 credits) + Case study project (equivalent to 12 credits)
OR
(b) 8 courses (each equivalent to 6 credits) + Dissertation (equivalent to 24 credits)
Course Selection

Candidates shall select courses in accordance with the regulations of the degree. In addition, the MSc(ECom&IComp) curriculum has the following guidelines on course selection.

i. Candidates have to complete at least 4 courses (at least 24 credits in total) from the following list of fundamental courses:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOM6004</td>
<td>Legal aspects of IT and e-commerce</td>
</tr>
<tr>
<td>ECOM6008</td>
<td>Supply chain and e-logistics management</td>
</tr>
<tr>
<td>ECOM6013</td>
<td>E-commerce technologies</td>
</tr>
<tr>
<td>ECOM6029</td>
<td>E-business transformation</td>
</tr>
<tr>
<td>ICOM6012</td>
<td>Internet infrastructure technologies</td>
</tr>
<tr>
<td>ICOM6034</td>
<td>Website engineering</td>
</tr>
<tr>
<td>ICOM6045</td>
<td>Fundamentals of e-commerce security</td>
</tr>
<tr>
<td>ICOM6046</td>
<td>Semantic data architecture</td>
</tr>
</tbody>
</table>

ii. Candidates can select any courses in MSc(ECom&IComp) discipline, which are listed in the course descriptions section below. These can be a mixture of courses from ECOM and/or ICOM subject area(s) and some selected COMP and/or FITE courses.

iii. Candidates may also in exceptional circumstances select at most 2 courses (at most 12 credits in total) offered by other taught postgraduate curricula in the Faculty of Engineering as electives. All course selection will be subject to approval by the Course Coordinators concerned.
MSc(ECom&IComp) Course descriptions

The following is a list of discipline courses offered by the Department of Computer Science for the MSc(ECom&IComp) curriculum.

It is the goal of the programme to have a comprehensive and dynamic curriculum in order to meet the challenges and opportunities of the fast developing Internet world. Therefore the courses, both in terms of range and syllabus, are updated and revised continuously and are subject to the approval of the University's Senate. The list of courses below is not final and some courses may not be offered every year.

All courses are assessed through examination and/or coursework assessment, the weightings of which are subject to approval by the Board of Examiners.

ECOM6004. Legal aspects of I.T. and e-commerce (6 credits)

This course provides an introduction to some of the main legal problems generated by recent developments in information technology and e-commerce, and their possible solutions. Topics to be covered include, but are not limited to, copyright, domain name disputes and other intellectual property issues on the Internet, contractual issues of on-line trading, public key infrastructure and electronic transactions, privacy and data protection.

Mutually exclusive with: COMP7901 Legal protection of digital property

ECOM6008. Supply chain and e-logistics management (6 credits)

The course is designed to prepare you to apply business strategies, analytical methodologies and information technology in supply chain management. Traditionally industries have focussed on operation evaluation and performance improvement of mainly the manufacturing process; however, the deficiency of supply chain coordination results in severe downgrade of business competitiveness. With advent of information technology, computers not only improve manufacturing operation and management and also strategic decision-making as well. This course focuses on the systems approach to the planning, analysis, design, development, and evaluation of supply chain and e-logistics management.

ECOM6013. E-commerce technologies (6 credits)

This course provides an overview of technologies currently used in electronic commerce and an introduction to some likely to play a major role in the future. Topics include (but are not limited to) Internet & e-commerce infrastructure, e-commerce presence & development life cycle, web design & implementation, mobile commerce technology, Internet & e-commerce security, electronic payment systems, blockchain & cryptocurrencies, AI & machine learning, smart city & IoT, e-commerce technology trends.

ECOM6014. E-marketing (6 credits)

This course considers how to create customer centric strategies for e-businesses. Marketing focuses on the interaction between the producer and the consumer. This focus remains unchanged in e-marketing, but our ability to foster this interaction with technology has been dramatically increased. The Internet provides new forms of communications like web sites, e-mail, social media, and mobile communications. However, these technologies do not necessarily replace traditional marketing vehicles like mass media, direct mail, and telephone marketing, but instead augment them to improve the
customer experience. The basic premise of this course is that these technologies can be used to fulfill the goal of a customer-centered marketing strategy.

The goal for this course is to develop a set of principles so that managers can effectively develop and implement e-marketing strategies. A core framework that we will use in this course is an interactive marketing strategy. Interactive marketing goes by many names, including customer relationship management (CRM). E-marketing allows companies to interact with consumers on an individual basis and create customized products and services using personalized knowledge about a consumer. As part of this course we develop a compatible set of quantitative techniques to implement interactive marketing strategies. Throughout the course we explore examples and cases to understand how e-marketing is evolving in practice.

ECOM6016. Electronic payment systems (6 credits)

The course covers banking systems, e-payment security, foreign exchange, Internet banking, mobile payments, credit and stored-value cards, Octopus, micropayments, peer-to-peer payments, cryptocurrencies, blockchain, large-scale B2B payments, faster (instant) payments, seamless shopping and the future of money. Particular attention is given to Hong Kong and Mainland China banking and payment systems.

ECOM6020. Customer relationship management: business strategies and techniques (6 credits)

The objectives of this course are to understand CRM concepts; CRM business strategies; typical business applications for CRM; and the process to implement CRM projects.

ECOM6022. Topics in electronic commerce (6 credits)

This course covers advanced topics in areas in electronic commerce that are relevant at the time. Leaders in the field, expert practitioners and distinguished scholars in the field around the world will be invited to participate in this course.

ECOM6023. E-financial services (6 credits)

This course provides students with the fundamentals of financial services in the context of e-Commerce and mobile devices. Payment systems in general and various payment transaction systems in particular will be examined. Similarly, eFinance has brought new concepts into e-Brokerage, e-Insurance, e-Lending and other fields. The course covers technology, operations, customer experience as well as demonstrates how regulations and security aspects are impacted by developments like Bitcoin and Blockchain. Studies of established banks as well as new FinTech Players serve as examples and reinforcements for many of the concepts.

ECOM6029. E-business transformation (6 credits)

eCommerce has shortened business transaction cycles, expanded market reach, and allowed companies to build and manage customer relationship more effectively. Companies need to transform their business model periodically with an eye to improving their operational effectiveness, entrenching their strategic position, and ultimately sustaining their competitive advantage.

As change is inseparable from life, and thus strategic advantage by definition transient, transformation and innovation are inseparable from business survival. In order to thrive, businesses have to manage
their processes effectively, revisit their value propositions periodically, and at times change their business model entirely. Innovation and transformational initiatives, however, are difficult to implement and prone to failure as companies must grapple with a whole host of strategic, organizational, psychological and increasingly global issues.

This course builds on the basic principles of cognitive science, business and economics to examine the role of the change as a strategic necessity. It provides a roadmap for transforming companies into inter-networked enterprises where proprietary and shared infrastructures are used to link customers, suppliers, partners and employees to create superior economic value. You will learn how the Internet can provide firms with the necessary infrastructure needed to align their business strategy with IT strategy, streamline front-end and back-end processes, manage relationships and partnerships, and adapt to emerging global issues such as outsourcing and offshoring. In the process you will learn about the nature of change and business complexity and gain a better appreciation of the nature of organizational failure.

The course pays special attention to the adverse effects of cognitive biases in the transformation process by looking into the inner workings of the brain to understand, among other things, why we prefer the status quo and generally resist change, why we regularly act rationally irrational, why we cannot usually break away from our entrenched mental models to think creatively.

ECOM6033. Geospatial information and technology for location-based services (6 credits)

Location-based services (LBS) are the collection of data and technology that drive popular applications such as in-car navigation, mapping of nearby points of interest on cell phones, automatic notification of weather hazards as they impact travel along a highway route, location-based advertising, geosocial networking, and tracking of inventory in warehouses. These applications leverage the user’s or object’s physical location to locate and access additional relevant information. LBS is enabled by the nexus of the Internet, wireless and geospatial technology realms. While geospatial technology is perhaps the least understood of these, geospatial content and services comprise the majority of the value component in LBS. To help students explore the full value of LBS, this course examines how to identify, obtain and manage the location-based information that users need and the geospatial technology and content behind LBS called Geographic Information Systems (GIS).

ECOM6037. Developing business models for digital media (6 credits)

The course introduces digital media cases and platforms that are used as a foundation for student work to design business models for media concepts. The course specifically explores business models focused on social media and content apps for handheld devices. This means not only smart phones, but also notebooks and tablets such as the i-Pad as well as devices and controllers used for electronic games. Special attention will be paid to developments in Hong Kong and Mainland China.

Agile methods like effectuation and the business model development canvas are applied to identify, develop, and argue the case for launching an innovative digital media product. The aim of the course is therefore to ensure that students have the necessary competencies to select and further develop an appropriate business model for a digital media innovation of their choice should they want to join the media industry.

ECOM7121. Dynamic digital capabilities (6 credits)

This course covers the fundamental business and economic principles of dynamic digital capabilities as well as mobile platform innovation. It provides a systematic framework, cases and hands-on experience. It is designed to guide managers, developers, engineers and graduate students in the development of
transformative digital and smartphone business models and capability-building. Cases include multinational corporations, entrepreneurial startups, emerging unicorns, nonprofit and government worldwide.

ECOM7122. Entrepreneurship development and FinTech ventures in Asia (6 credits)

This course provides an intense and mentored hands-on experiential learning opportunity where highly motivated entrepreneurial teams of students can be guided in Lean Startup techniques and learn interactively while helping analyze, expand and pivot already-award-winning early stage ventures.

We will focus on FinTech Ventures and Ecosystems in Asia, a high priority area for the Hong Kong government and China, where the online transaction volume of online giants like AliPay and WeChat already eclipses traditional banks and financial institutions.

ECOM7123. Building smart cities: an information system approach (6 credits)

Hong Kong, like a number of cities in China and overseas, is following global trend to develop and transform herself into a smart city. The concept of a smart city is based on the application of ICT in various domains of the city to connect and integrate the systems and services of the city for better synergy and efficient use of resources. The vast amount of real-time data generated by smart sensors can be integrated with the modern information and communication technologies, useful information and insights can then be derived by analytic techniques to optimize and automate city management. Productivity can be boosted and sustainability can be ensured based on the effective collection, delivery and manipulation of the information in smart cities by innovative applications. The ultimate goal of smart city development is to improve people’s quality of life and support the development of innovation and business enterprises.

This course presents an overview and the core concepts and techniques of building smart cities by utilizing the technologies like Geographic Information Systems (GIS), Location Intelligence, Open Data, Common Spatial Data Infrastructure (CSDI), Big Data analytics, Internet of Things (IoT), Artificial Intelligence (AI) etc., that are indispensable to the development and effective management of the key components of smart cities. Key components of smart cities in the Smart City Wheel and various development stages will be discussed in details and current and potential technologies facilitating smart city development will be introduced. Students will not only learn the concepts but also real applications being developed or used in smart cities. A series of guest lectures will be arranged for our students to understand more about the actual implementations of smart city projects in various industries in Hong Kong.

ECOM7124. Mobile and IoT computing services and applications (6 credits)

With nearly 5 billion mobile phone users worldwide, including well over 2 billion smartphone users, new mobile and IoT technologies are driving the development of a slew of new products and services. This course introduces students to the technologies, applications, services and business models associated with the mobile Internet and the Internet of Things (“IoT”). This includes looking at underlying technologies as well as important usability, security, privacy and business considerations, and learning to appreciate and analyze the challenges and tradeoffs they entail. The course also provides an overview of future trends and ongoing research in this new and fast growing area.
ECOM7000. Dissertation (24 credits)

The dissertation project is to provide an opportunity for the student to dive in depth into either a business case and/or a technology development in the e-commerce and Internet computing, and apply their body of knowledge learned in the programme to implement the business plan and/or the relevant technology to demonstrate its feasibility in a real or simulated business environment. This would involve substantive research into the chosen business plan and/or technology, implement and evaluate the proposed business plan or technology. Finally consolidate the findings and conclusion in the dissertation, and demonstrate the project result.

ECOM7001. Case study project (12 credits)

The case study project is to provide an opportunity for the student to dive in depth into either a business case or a technology development in the e-commerce and Internet computing, and apply their body of knowledge learned in the programme to understand and critically analyse the particular case. This would involve substantive research into the “Subject”, collect appropriate data by suitable means, research into reports and publicly available information, and consolidate their findings and conclusion in a case study report.

ICOM6012. Internet infrastructure technologies (6 credits)

This course takes a systematic approach to study the various components which form the infrastructure of the Internet. It provides a comprehensive coverage of existing and emerging Internet technologies and applications. Topics include: access and backbone network technologies; IP addressing and routing architectures; standard transport and application protocols; operating principles and internals of network entities. We will focus not only on how the Internet works but also its design rationale and engineering tradeoffs.

ICOM6027. E-crimes: digital crime scenes and legal sanctions (6 credits)

This course helps participants to grapple with crimes in the electronic age from both technical and legal points of view. It addresses three important aspects of the subject, namely, technologies adopted in e-crimes, legal sanctions and management of e-crimes scenes. Topics covered include: trends in e-crimes; different types of e-crimes, tools and technologies for committing e-crimes; laws relating to e-crimes and criminal sanctions; digital forensics, post-incident and live-forensic crime scene management, chain of evidence, collecting and collating digital evidence.

ICOM6029. Topics in Internet computing (6 credits)

This course covers advanced topics in areas in Internet computing that are relevant at the time. Leaders in the field, expert practitioners and distinguished scholars in the field around the world will be invited to participate in this course.

ICOM6034. Website engineering (6 credits)

This course will introduce the standards, the software technologies and some good practices for implementing websites and web applications. It aims at covering an "end-to-end" picture of content delivery and presentation on the web, that is, from the "server-sides" where data is stored, adapted or integrated, to the "client-sides" with various demands and capabilities. It will suit students who wish to have a technical understanding on the subject or a career in website engineering, as it will introduce
the techniques for building maintainable, extensible, interactive and mission-critical websites and web applications, using state-of-the-art standards and open-source tools.

The topics covered will be organized into four parts: (1) Website development basics (enabling standards and technologies, responsive web design, basic web security); (2) Design and implementation of web applications (rich Internet applications, client-side frameworks, MVC design patterns and libraries, content management systems); (3) Interoperability of web applications and services (web API protocols, mashups, cloud services for web development); and (4) Optimizations (traffic analysis, search engine and performance optimization techniques).

ICOM6041. An introduction to cloud computing (6 credits)

This course offers an overview of current cloud technologies, and discusses some issues in the design and implementation of cloud systems, and the impact cloud computing on business.

Topics include Cloud Service models (SaaS, PaaS, and IaaS), virtualization techniques (Xen, KVM, VMWare, Linux Container), cluster and data center networking, software-defined network (SDN) and OpenFlow, Big Data processing frameworks (Hadoop and Spark), Map/Reduce and Spark programming paradigm for large-scale data analysis. Motivating examples from major cloud computing players such as Google, Amazon, and Microsoft will be discussed.

ICOM6042. Designing apps for smart mobile phones (6 credits)

Smart phones have dominated the technology market in recent years, led by the major brands of iPhones, Android and Windows phones. These increasingly powerful phones are supported by a whole range of applications (abbreviated to “Apps”) developed and uploaded for commercial or free distribution by professional as well as aspiring programmers that a whole new worldwide market has sprung up. More and more of these apps have been specially designed and developed for corporations that they are now beginning to play an important role in e-business operations.

This course introduces the design principles of these apps, their development, testing, and marketing as well as the technology platforms and programming languages for use on small screens. Hands-on practice is provided for students to gain confidence and some expertise, so that they can be on their way to exploit this new emerging career opportunity.

ICOM6044. Data science for business (6 credits)

The emerging discipline of data science combines statistical methods with computer science to solve problems in applied areas. In this case we focus on how data science can be used to solve business problems especially those in electronic commerce. By its very nature e-commerce is able to generate large amounts of data and data mining methods are quite helpful for managers in turning this data into knowledge which in turn can be used to make better decisions. These data sets and their accompanying quantitative methods have the potential to dramatically change decision making in many areas of business. For example, ideas like interactive marketing, customer relationship management, and database marketing are pushing companies to utilize the information they collect about their customers in order to make better marketing decisions.

This course focuses on how data science methods can be applied to solve managerial problems in marketing and electronic commerce. Our emphasis is developing a core set of principles that embody data science: empirical reasoning, exploratory and visual analysis, and predictive modeling. We use these core principles to understand many methods used in data mining and machine learning. Our strategy in this course is to survey several popular techniques and understand how they map into these core principles. These techniques are illustrated with case studies. However, the emphasis is not on
the software for implementing these techniques but on understanding the inputs and outputs of these techniques and how they are used to solve business problems.

ICOM6045. **Fundamentals of e-commerce security (6 credits)**

This course provides an in-depth understanding of basic security problems and relevant e-commerce solutions, while helping students implement today’s most advanced security technologies, such as designing secure Web, e-commerce, and mobile commerce applications, securing corporate internal network, and providing secure employee/user authentication.

Key topics include: Security mechanisms, key management and certificates, payment security services, communication network and network access layer security, Internet layer security and transport layer security, application layer security, hypertext transfer protocol, web server security, web client security, mobile code security, mobile agent security, mobile commerce security.

Mutually exclusive with: COMP7301 Computer and network security and COMP7906 Introduction to cyber security

ICOM6046. **Semantic data architecture (6 credits)**

This course covers enterprise approaches for designing data architectures, data models, and data management governance for interoperable information systems. The course will develop skills to understand and apply data architecture methodologies and frameworks, including structured modelling and data representation, that underpin global data standards. The course has a focus on semantic web technologies including linked open data, ontologies, and reasoning that are the foundations for graph-based data systems.

ICOM7125. **Digital forensics (6 credits)**

This course serves as an introduction to students about current concepts and methodologies in conducting digital forensics investigation. It gives an overview of post-mortem digital forensics analysis, network forensics analysis, mobile forensics analysis as well as live forensics analysis and provides students with hands-on experience of identifying, acquiring, preserving, analysing and presenting digital evidence.

ICOM7000. **Dissertation (24 credits)**

The dissertation project is to provide an opportunity for the student to dive in depth into either a business case and/or a technology development in the e-commerce and Internet computing, and apply their body of knowledge learned in the programme to implement the business plan and/or the relevant technology to demonstrate its feasibility in a real or simulated business environment. This would involve substantive research into the chosen business plan and/or technology, implement and evaluate the proposed business plan or technology. Finally consolidate the findings and conclusion in the dissertation, and demonstrate the project result.

ICOM7001. **Case study project (12 credits)**

The case study project is to provide an opportunity for the student to dive in depth into either a business case or a technology development in the e-commerce and Internet computing, and apply their body of knowledge learned in the programme to understand and critically analysis the particular case. This
would involve substantive research into the “Subject”, collect appropriate data by suitable means, research into reports and publicly available information, and consolidate their findings and conclusion in a case study report.

COMP7404. Computational intelligence and machine learning (6 credits)

This course will teach a broad set of principles and tools that will provide the mathematical, algorithmic and philosophical framework for tackling problems using Artificial Intelligence (AI) and Machine Learning (ML). AI and ML are highly interdisciplinary fields with impact in different applications, such as, biology, robotics, language, economics, and computer science. AI is the science and engineering of making intelligent machines, especially intelligent computer programs, while ML refers to the changes in systems that perform tasks associated with AI. Ethical issues in advanced AI and how to prevent learning algorithms from acquiring morally undesirable biases will be covered.

Topics may include a subset of the following: problem solving by search, heuristic (informed) search, constraint satisfaction, games, knowledge-based agents, supervised learning, unsupervised learning; learning theory, reinforcement learning and adaptive control and ethical challenges of AI and ML.

Pre-requisites: Nil, but knowledge of data structures and algorithms, probability, linear algebra, and programming would be an advantage.

COMP7407. Securities transaction banking (6 credits)

The course introduces the business and technology scenarios in the field of transaction banking for financial markets. It balances the economic and financial considerations for products and markets with the organizational and technological requirements to successfully implement a banking function in this scenario. It is a crossover between studies of economics, finance and information technology and features the concepts from basics of the underlying financial products to the latest technology of tokenization of assets on a Blockchain.

COMP7802. Introduction to financial computing (6 credits)

This course introduces the students to different aspects of financial computing in the investment banking area. The topics include yield curve construction in practice, financial modelling and modern risk management practice, etc. Financial engineering is an area of growing demand. The course is a combination of financial product knowledge, financial mathematics and computational techniques. This course will be suitable for students who want to pursue a career in this fast growing area.

Prerequisites: This course does not require any prior knowledge in the area of finance. Basic calculus and numeric computational techniques are useful. Knowledge in Excel spreadsheet operations is required to complete the assignments and final project.

COMP7901. Legal protection of digital property (6 credits)

This course introduces computer professionals to the various legal means of protecting digital property including computer software, algorithms, and any work or innovation in digital form. Focus is on the main issues in protecting digital property arising from developments in information technology, and their legal solutions. Topics covered include, but are not limited to, the following: 1) copyright protection of software and websites, 2) patent protection of software and algorithms, 3) protection of personal data.

Mutually exclusive with: ECOM6004 Legal aspects of IT and e-commerce
FITE7410. Financial fraud analytics (6 credits)

This course aims at introducing various analytics techniques to fight against financial fraud. These analytics techniques include, descriptive analytics, predictive analytics, and social network learning. Various data set will also be introduced, including labeled or unlabeled data sets, and social network data set. Students learn the fraud patterns through applying the analytics techniques in financial frauds, such as, insurance fraud, credit card fraud, etc.

Key topics include: Handling of raw data sets for fraud detection; Applications of descriptive analytics, predictive analytics and social network analytics to construct fraud detection models; Financial Fraud Analytics challenges and issues when applied in business context.

Required to have basic knowledge about statistics concepts.